Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range.
نویسندگان
چکیده
Endoscopic imaging in tubular structures, such as the tracheobronchial tree, could benefit from imaging optics with an extended depth of focus (DOF) to accommodate the varying sizes of tubular structures across patients and along the tree within the same patient. Yet the extended DOF needs to be accomplished without sacrificing resolution while maintaining sufficient sensitivity and speed of imaging. In this Letter, we report on the measured resolution and sensitivity achieved with a custom-made micro-optic axicon lens designed to theoretically achieve an 8 mm DOF. A measured invariant resolution of approximately 8 microm is demonstrated across a 4 mm measured DOF using the micro-optic axicon while achieving an invariant sensitivity of approximately 80 dB with a 25 mW input power. Double-pass Bessel beam spectral-domain optical coherence tomography with an axicon micro-optic lens (i.e., <1 mm in diameter) is, for the first time to our knowledge, demonstrated in a biological sample demonstrating invariant resolution and signal-to-noise ratio across a 4 mm measured DOF, which is compared to Gaussian beam imaging.
منابع مشابه
A 5mm catheter for constant resolution probing in Fourier domain optical coherence endoscopy
A 5mm biophotonic catheter was conceived for optical coherence tomography (OCT) with collimation optics, an axicon lens, and custom design imaging optics, yielding a 360 degree scan aimed at imaging within concave structures such as lung lobes. In OCT a large depth of focus is necessary to image a thick sample with a constant high transverse resolution. There are two approaches to achieving con...
متن کامل2mm Catheter Design for Endoscopic Optical Coherence Tomography
A biophotonics catheter was conceived with collimation optics, an axicon lens, and custom design imaging optics yielding a 360 degree scan aimed at imaging within concave structures such as arteries and lung lobes. The large depth of focus is necessary to image a long-depth-range sample with constant transverse resolution in optical coherence tomography (OCT). There are two approaches to achiev...
متن کاملQuantifying the influence of Bessel beams on image quality in optical coherence tomography
Light scattered by turbid tissue is known to degrade optical coherence tomography (OCT) image contrast progressively with depth. Bessel beams have been proposed as an alternative to Gaussian beams to image deeper into turbid tissue. However, studies of turbid tissue comparing the image quality for different beam types are lacking. We present such a study, using numerically simulated beams and e...
متن کاملHigh-resolution optical coherence tomography over a large depth range with an axicon lens.
In optical coherence tomography, axial and lateral resolutions are determined by the source coherence length and the numerical aperture of the sampling lens, respectively. Whereas axial resolution can be improved by use of a broadband light source, there is a trade-off between lateral resolution and focusing depth when conventional optical elements are used. We report on the incorporation of an...
متن کاملCoherent transfer functions and extended depth of field
To preserve the speed advantage of Fourier Domain detection in Optical Coherence Microscopy (OCM), extended depth of field (DOF) is needed. To assess and improve the DOF and the lateral resolution, we analyzed the coherent transfer function (CTF) of OCM. In the spectral domain detection, each wavelength has its own specific CTF, sampling a different part of the object’s spatial frequency spectr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics letters
دوره 33 15 شماره
صفحات -
تاریخ انتشار 2008